Abstract

In order to improve the conductivity of ceria-based solid electrolytes, effect of co-doped Gd3+ and Dy3+ was evaluated. For this purpose, nano-crystalline Gd0.2 − xDyxCe0.8O1.9 powders with various composition ranges (x = 0.05, 0.1, 0.15, 0.2) were initially synthesized by high-energy milling method. The effect of micro-structural evolution and co-doping on electrical properties of the dense sintered samples fabricated by two-step sintering and conventional sintering of the synthesized powders were investigated. Electrical conductivity of the samples was discussed based on the results obtained by AC impedance spectroscopy at temperatures in the range of 300–700 °C. The co-doping and sintering regime were found to significantly influence the conductivity of the electrolytes. The electrical conductivity of the co-doped samples depends on Dy3+ content and the maximum conductivity obtained by 0.15 mol% Dy and 0.05 mol% Gd. The conductivity of Gd0.2 − xDyxCe0.8O1.9 (x = 0.15) was 0.03 S/cm at 700 °C. A thorough discussion was made, based on the present experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.