Abstract

In the present work, we studied the influence of the bath composition (e.g., organic modifiers) on the mobility resolving power, resolution, and lifetime of familiar explosives during trapped ion mobility spectrometry (TIMS). Experimental results showed the dependence of the mobility with the organic modifiers (mass and size) for the case of TIMS-MS. Different from trends observed in drift tube like IMS devices, no correlation between the mobility resolving power and resolution in TIMS was observed with the bath gas composition (e.g., air, air + methanol, air +2-propanol, and air + acetone). Time decay plots showed that common explosives with adduct complexes signal decrease over time as a function of the trapping time, without any significant improvement with the addition of the organic modifiers. Theoretical calculation of potential clustering and dissociation pathways supported the time decay findings since no major energetic differences between the pathways were observed as a function of the organic modifiers. Our findings suggest that beside the size of the collision partner, there are specific intermolecular dynamics that drive the trapping behavior of familiar explosives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.