Abstract

In this study, a new casing process named expendable pattern shell casting process with vacuum and low pressure (EPSC-VL) was introduced to produce complicated and thin-walled aluminum alloy castings. The gas flowrate is one of the most important process parameters for manufacturing castings during the EPSC-VL process. In the present work, the influence of gas flowrate on the filling ability and internal quality of A356 aluminum alloy castings fabricated by the EPSC-VL process were investigated. Moreover, the filling ability, internal quality, as well as mechanical properties of A356 aluminum alloy castings obtained by EPSC-VL and lost foam casting (LFC) processes were also compared. The results obtained suggested that the filling length increased with the increase of gas flowrate, and the filling length of the thick section was larger than that of the thin section under the same gas flowrate when the gas flowrate was less than 19 m3/h. Furthermore, the porosity of castings decreased with increasing gas flowrate, and the microstructure of castings became denser, and the internal quality of castings was obviously improved. The comparison experiments showed that the EPSC-VL process had superior filling ability, internal quality, and mechanical properties compared with the LFC process, and the surface quality of castings obtained by EPSC-VL process was also better than that of the LFC process. The casting practice of complicated and thin-walled A356 aluminum alloy intake manifold part also suggested that the EPSC-VL process had an obvious advantage for the fabrication of complicated and thin-walled aluminum alloy castings compared with the LFC process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call