Abstract

It has been previously demonstrated that thermal gas expansion might have a role in boundary layer flashback of premixed turbulent flames [Gruber et al., J Fluid Mech 2012], inducing local flow-reversal in the boundary layer's low-velocity streaks on the reactants’ side of the flame and facilitating its upstream propagation. We perform a two-dimensional numerical investigation of the interaction between a periodic shear flow and a laminar premixed flame. The periodic shear is a simplified model for the oncoming prolonged streamwise velocity streaks with alternating regions of high and low velocities found in turbulent boundary layers in the vicinity of the walls. The parametric study focuses on the amplitude and wavelength of the periodic shear flow and on the gas expansion ratio (unburnt-to-burnt density ratio). With the increase of the amplitudes of the periodic shear flow and of the gas expansion, the curved flame velocity increases monotonically. The flame velocity dependence on the periodic shear wavelength is non-monotonic, which is consistent with previous theoretical studies of curved premixed flame velocity. The flame shape that is initially formed by the oncoming periodic shear appears to be metastable. At a later stage of the flame propagation, the flame shape transforms into the stationary one dominated by the Darrieus-Landau instability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.