Abstract

Applying gas recirculation in a high pressure cell, laser pulses of 1ps at 400nm and with a repetition rate of 1kHz were frequency shifted by stimulated Raman scattering and amplification in methane gas at high pressure. We studied the influence of gas recirculation on the conversion efficiencies into the Stokes and anti-Stokes components as well as on their spatial distributions and spectral shapes using generator and generator-amplifier arrangements. For high pump energies, recirculation in the generator cell decreases conversion efficiency into the first Stokes component whereas it increases conversion into higher Stokes and anti-Stokes components. It results in a significantly improved spatial characteristics of the frequency-shifted radiation, however, is accompanied by a substantial spectral broadening. Using gas recirculation in the generator-amplifier arrangement we achieved a conversion efficiency into the first Stokes component of about 50% with highly improved spatial and spectral characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call