Abstract
In this paper, narrow-pulse power discharge is used to study the synergistic control of mercury and dioxins, in which 1,2,4-trichlorobenzene (TCB) was used as a dioxin analog, by using a self-designed experimental system. The competitive effects of NO, SO2 and HCl on the TCB removal by non-thermal plasma are discussed. The influence of acid gas on TCB degradation is reflected in the competitive effect. NO has the greatest influence on TCB degradation efficiency. The oxidation efficiency of Hg0 decreased by about 10% in all three acidic gas atmospheres, and the effect of each gas component on Hg0 oxidation is complex. In the flue gas atmosphere of ‘acid gas + Hg0 + TCB’, the mechanism of the synergistic control of Hg0 and TCB by the non-thermal plasma is different, which has competition and promotion relationship between each other. The contribution of various flue gas components to the results was complicated, but the overall experimental results show that the synergistic control effect of the system can continue to improve. According to the generated product backstepping, ·OH plays an important role in the synergistic control of the degradation of Hg0 and TCB. Through this study, we hope to provide basic research data for the collaborative control of flue gas in the incineration industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.