Abstract
Recent accelerator-based experiments for particle physics require the superconducting magnets that can be operated under high radiation environment. An electrical insulation tape, which is composed of polyimide film and a boron free glass fabric pre-impregnated with epoxy resin blended with bismaleimide-triazine resin, is developed to enhance the radiation tolerance for superconducting magnets. Since the thermal conductivity of insulation tape is one of key parameters that affects the coil temperature during the operation, the influence of gamma-ray irradiation on the thermal conductivity of the insulation tape is investigated with a maximum dose of 5 MGy. The thermal conductivity is measured at cryogenic temperature from 5 K to 20 K cooled by a Gifford-McMahon cryocooler. By comparing the thermal conductivity before and after the gamma ray irradiation, no significant degradation on the thermal conductivity has been observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.