Abstract

This study was aimed at generating baseline information for sustainable genetic improvement of Cirana forda larvae for entomophagy, through the use of gamma irradiation. Eggs of C. forda were irradiated with increasing doses of gamma rays from 0 to 200 Gy and raised through larval instal stages under laboratory conditions. The Body Weight (BW) and Head Capsule Width (HCW) of the larval instar stages were monitored as indices of productivity. Successful larval emergence was recorded for all irradiation doses tested and BW of the 1st and 2nd instar larvae were not significantly (p > 0.05) different between the control and treated groups (range = 0.021 +/- 0.003 g/larva in the 200 Gy treatment to 0.028 +/- 0.003 g/larva in the control group and 0.105 +/- 0.003 g/larva in 20 Gy treatment to 0.172 +/- 0.009 g/larva in the control group, respectively). On the other hand, BW during the 3rd and 4th larval instars were significantly (p < 0.05) lower among the irradiated treatments than control. Pattern of distribution of HCW was different from that of BW; as HCW increased with irradiation dose from 10-50 Gy during the 3rd and 4th larval instars. Also, HCW during the 5th instar larvae among the irradiated treatments (range = 5.256 +/- 0.012 to 5.662 +/- 0.026 mm) were not higher than that of the 6th instar in the control group (6.065 +/- 0.010 mm). These results suggest promising potentials of the use of gamma irradiation in sustainably improving the productivity of C. forda larvae for entomophagy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call