Abstract

While walking with fast speed aims to promote health and fitness of individuals, the potential risk on lower limb joint loading across walking speed is still unknown. In order to determine the joint contact force loading associated with different walking speeds, fifteen young male and fifteen female participants performed barefoot walking across different speeds (regular = 1.1 m/s, medium = 1.4 m/s, and fast = 1.7 m/s). The synchronized motion and ground reaction force (GRF) data were captured by Codamotion capture system and AMTI force platform. All kinematics and GRF information were input to the AnyBody musculoskeletal model to determine 3-dimensional knee contact forces. The results showed that increased walking speed was associated with a greater proximal-distal and anterior-posterior GRF during early impact phase, implying that the joint stability is more demanding at higher walking speed conditions (P < 0.05). In addition, higher proximal-distal and anterior-posterior knee contact forces were found when participants were walking at higher speeds (P < 0.05). Therefore, the risk of knee cartilage and ligament damage associated with the increased knee contact forces should require further attention.

Highlights

  • Power walking or speed walking, which is defined as the walking with an individual’s fastest speed, is a popular fitness exercises among cities in China

  • Heel contact, forefoot, and toe-off times were found at fast speed compared with those at regular speed condition (P < 0 05)

  • At forefoot contact, knee flexion was decreased by 10° in fast speed compared with that in the other two speed conditions (P < 0 05)

Read more

Summary

Introduction

Power walking or speed walking, which is defined as the walking with an individual’s fastest speed, is a popular fitness exercises among cities in China. Landing movements during walking [4], running [5], gymnastics [6], volleyball [7], soccer [8], and Australian football [9] have been studied using with kinetic, kinematic, and electromyography parameters for the evaluation of injury risk or performance. In these studies, ground reaction forces (GRF) and the ankle and knee joint forces provide key and fundamental information to understand loading [10, 11]. These force parameters are often compared among different subject groups to identify biomechanical differences [12,13,14]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call