Abstract

The sonochemical reaction approach was used to make NiGdxFe2-xO4 nanoferrites (x = 0.01, 0.03, 0.05, 0.07, and 0.09). X-ray diffraction (XRD), ultra violet-diffuse reflectance spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, vibrating sample magnetometer, and electrochemical impedance spectroscopy were used to investigate the optical, magnetic, electrical, and structural properties of NiGdxFe2-xO4 nanoferrites. The creation of a cubic spinel structure was confirmed by analyzing the XRD pattern of these NiGdxFe2-xO4 nanoferrites. The average crystallite diameters of the nanoparticles for the compositions x = 0.01, 0.03, 0.05, 0.07, and 0.09 were 57, 53, 48, 45, and 41 nm, respectively. To investigate the dielectric behavior of the produced nanoferrites, an impedance study was performed. The addition of Gd to NiFe2-xO4 nanoparticles increased the dielectric characteristics of the produced nanoferrites, according to characterization experiments. A cation distribution has been proposed for the determination of various important theoretical parameters for these samples. The addition of Gd3+ nanoparticles has shown the ferromagnetic behavior at room temperature confirmed by VSM analysis. A specific correlation between magnetic interaction and lattice strain was observed in Gd3+ substituted nickel ferrite. An increase in Gd concentration in the manufactured nanoferrites resulted in a rise in saturation magnetization and a decrease in coercivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.