Abstract
Abstract The influence of fuel properties on particulate matter (PM) emissions from a catalytic gasoline particulate filter (GPF) equipped gasoline direct injection (GDI) engine were investigated using novel “virtual drivetrain” software and an engine mated to an engine dynamometer. The virtual drivetrain software was developed in LabVIEW to operate the engine on an engine dynamometer as if it were in a vehicle undergoing a driving cycle. The software uses a physics-based approach to determine vehicle acceleration and speed based on engine load and a programed “shift” schedule to control engine speed. The software uses a control algorithm to modulate engine load and braking to match a calculated vehicle speed with the prescribed speed trace of the driving cycle of choice. The first 200 seconds of the WLTP driving cycle was tested using 6 different fuel formulations of varying volatility, aromaticity, and ethanol concentration. The first 200 seconds of the WLTP was chosen as the test condition because it is the most problematic section of the driving cycle for controlling PM emissions due to the cold start and cold drive-off. It was found that there was a strong correlation between aromaticity of the fuel and the engine-out PM emissions, with the highest emitting fuel producing more than double the mass emissions of the low PM production fuel. However, the post-GPF PM emissions depended greatly on the soot loading state of the GPF. The fuel with the highest engine-out PM emissions produced comparable post-GPF emissions to the lowest PM producing fuel over the driving cycle when the GPF was loaded over three cycles with the respective fuels. These results demonstrate the importance of GPF loading state when aftertreatment systems are used for PM reduction. It also shows that GPF control may be more important than fuel properties, and that regulatory compliance for PM can be achieved with proper GPF control calibration irrespective of fuel type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.