Abstract

In most national and international codes for durability design, service life is estimated after selection of one single and dominant deteriorating process such as carbonation, chloride penetration or frost attack. Application of existing codes has shown, however, that the predicted service life is not reached in practice in most cases. Early damage occurs and as a consequence expensive repair measures become frequently necessary, long before the design service life is reached. One reason for this discrepancy is certainly the fact that in practice each dominant deteriorating process is usually accompanied by other aggravating processes. In this contribution capillary absorption of different types of concrete is studied first. The influence of an increasing number of freeze-thaw cycles on capillary absorption of water is studied first, then chloride penetration before and after exposure to a certain number of freeze-thaw cycles was determined experimentally. It was found that an increasing number of freeze-thaw cycles increases chloride penetration significantly, and hence reduces service life in aggressive environment. It can be concluded that for realistic service life prediction the interaction between frost damage and chloride penetration has to be taken into consideration in regions with low temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.