Abstract
Friction Stir Welding (FSW) is a solid-state welding process used for welding similar and dissimilar materials. FSW is especially suitable to join Al alloys sheets, and this technique allows different material couples to be welded continuously. In this study dissimilar joints between aluminum alloy (AA5454) and aluminum alloy (AA7075) produced by friction stir welding, to optimize these parameters and determine which of them is significant by using Taguchi L16 optimization method. Seven parameters at two levels were selected in this study. The selected parameters are tool rotational speed, traverse speed, pin profile (based on taper angle), the ratio between shoulder diameter (D) and pin diameter (d) (D/d ratio), tool tilt angle, plunge depth, and base metal location (weld location)). The ultimate tensile strength (UTS) and ductility are considered as the mechanical properties of the dissimilar joints. Then, mathematical models are built for ultimate tensile strength and ductility as a function of significant parameters/interactions using response surface methodology. In addition, the microstructures of the optimum joint and the weakest joint are studied using optical microscopy. The results of this work showed that the rotational speed, traverse speed, D/d ratio and plunge depth are significant parameters in determining UTS (mean, signal to noise ratio (S/N)) at different confidence levels, but pin profile, location of base metal and tool tilt angle are insignificant parameters at any confidence levels. The traverse speed has the highest contribution to the process for UTS about 18.5% and 16.9% for S/N ratio and mean, respectively. The accuracy of the models according to the UTS is 97.6% and 99.5% for mean and S/N ratio, respectively. The maximum joint efficiency, compared to the strength of the AA5454, is 85.3%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.