Abstract

Vortex induced vibration of cylindrical structures is an extensively researched topic. Most of the studies have concentrated on the response of the cylinder in the cross flow (CF) direction. In a realistic ocean environment, structures such as drilling and marine risers are more or less free to vibrate both in CF and in line (IL) directions. It has also been observed that the IL vibrations have significant influence on the CF response. Interaction between the responses in inline and cross flow directions has still been not fully understood. This paper addresses the same through a simplified numerical method for understanding the interaction between these two responses using two dimensional computational fluid dynamics (CFD) simulations. Here analyzes two cases have been considered; where in the cylinder is modeled with two different values of ratio of natural frequency of the cylinder in the IL direction to that in the CF direction. The trends of variation of hydrodynamic and structural parameters have been analyzed to comprehend the effect of directional natural frequency ratio on the cylinder response and hydrodynamic force coefficients. The shedding pattern has also been studied in this paper. An increase by 18% in the value of the lift coefficient and 38 % of that in the drag coefficient has been observed when the frequency ratio is increased from 1 to 2. The results show that the cylinder with frequency ratio 2 is more prone to lock in vibration. This phenomenon may be related to the shifting of shedding pattern from 2S to P + S mode when the frequency ratio is 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.