Abstract

In temperate climates, covers with capillary barrier effects (CCBEs) are being used successfully to prevent oxygen fluxes from reaching covered potentially acid mine drainage (AMD) generating mine tailings. In northern climates, the more attractive option for mine site reclamation is insulation covers, which are designed to keep reactive materials frozen. This article suggests that CCBEs can simultaneously control oxygen migration and mine waste temperature to inhibit AMD generation. However, in northern conditions, where natural fine-grained materials needed for the CCBE moisture-retaining layer are not always available, soil–bentonite mixtures could be used instead. This laboratory study assessed — using instrumented columns — the effects of freeze–thaw cycles on the performance of three CCBEs made with crushed rock–bentonite mixtures. An oxygen diffusion test was developed to determine the effective diffusion coefficient of oxygen (De) and its sensitivity to freeze–thaw cycles. The results show good initial performance for the saturated CCBEs. However, the tested CCBEs are significantly affected by freeze–thaw cycles and have limited oxygen-limiting ability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.