Abstract

This paper analyzes the influence of foundation deformation and the variation coefficient of vehicle parameters on the reliability of a vehicle vertical safety. Based on the theory of stochastic analysis of nonlinear vehicle–track coupled systems, combining the generalized probability density evolution theory, this paper takes the reduction rate of wheel load as the measurement index, considering the combined effects of stochasticity of track irregularity, stochasticity of vehicle parameters and foundation deformation, and studies the reliability of vehicle vertical safety under different working conditions. The results showed that (1) compared with the up-arch deformation, the settlement deformation has a greater impact on the operation safety; (2) with the increase of the variation coefficient of the vehicle parameters, the reliability of the vehicle vertical safety gradually decreases, so it should be combined with vehicle maintenance when setting the settlement limits; (3) when the vehicle operation speed is lower than 375 km/h, the stochasticity of the vehicle parameters has a more significant impact on the vehicle vertical safety, while when the speed is higher than 375 km/h, the foundation deformation amplitude has a more significant influence; (4) when the running speed is higher than 350 km/h, there may be a better set of vehicle parameters to ensure driving safety. It can be seen that in the determination of the high-speed railway foundation deformation limit value, the influence of deformation direction, vehicle parameters stochasticity, and operation speed should be considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call