Abstract

With the growing interest in developing biologics for pulmonary delivery, systematic fast screening methods are needed for rapid development of formulations. Due to the labile nature of macromolecules, the development of stable, biologically active formulations with desired aerosol performance imposes several challenges both from a formulation and processing perspective. In this study, spray-freeze-drying was used to develop respirable protein powders. In order to systematically map the selected design space, lysozyme aqueous pre-formulations were prepared based on a constrained mixture design of experiment. The physicochemical properties of the resulting powders were characterized and the effects of formulation factors on aerosol performance and protein stability were systematically screened using a logic flow chart. Our results elucidated several relevant formulation attributes (density, total solid content, protein:sugars ratio) required to achieve a stable lysozyme powder with desirable characteristics for pulmonary delivery. A similar logical fast screening strategy could be used to delineate the appropriate design space for different types of proteins and guide the development of powders with pre-determined aerodynamic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.