Abstract

Mini-matrices (multiple unit dosage form) with release-sustaining properties were developed by hot-melt extrusion (cylindrical die: 3mm) using metoprolol tartrate as model drug and ethylcellulose as sustained-release agent. Dibutyl sebacate was selected as plasticizer and its concentration was optimized to 50% (w/w) of the ethylcellulose concentration. Xanthan gum, a hydrophilic polymer, was added to the formulation to increase drug release. Changing the xanthan gum concentration modified the in vitro drug release: increasing xanthan gum concentrations (1%, 2.5%, 5%, 10% and 20%, w/w) yielded a faster drug release. Zero-order drug release was obtained at 5% (w/w) xanthan gum. Using kneading paddles, smooth extrudates were obtained when processed at 60 degrees C. At least one mixing zone was required to obtain smooth and homogeneous extrudates. The mixing efficacy and drug release were not affected by the number of mixing zones or their position along the extruder barrel. Raman analysis revealed that metoprolol tartrate was homogeneously distributed in the mini-matrices, independent of screw design and processing conditions. Simultaneously changing the powder feed rate (6-25-50 g/min) and screw speed (30-100-200 rpm) did not alter extrudate quality or dissolution properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call