Abstract

Anterior pituitary cells cultured as three-dimensional cell aggregates and incubated with gonadotropin-releasing hormone (GnRH) show a biphasic pattern of luteinizing hormone (LH) release when steroid-free bovine follicle fluid is added to the culture medium. Initially, the GnRH-induced LH release is low (lag-phase response), but LH release increases during further incubations with GnRH (primed-state response). Also, in aggregates of dispersed cells from long-term ovariectomized rats cultured for 2 days in the presence of 1% bovine follicle fluid, a low initial LH responsiveness to GnRH could be restored. Cycloheximide was found to block the induction of the primed state, indicating the protein synthesis dependency of GnRH self-priming. In aggregates from gonadotroph-enriched cell populations obtained by velocity sedimentation in a bovine serum albumin gradient, addition of 1% bovine follicle fluid to the culture medium also restored a biphasic pattern of GnRH-induced LH release. However, co-culturing the gonadotroph-enriched cell aggregates with a folliculo-stellate (FS) cell-enriched population resulted in the attenuation of the differences in LH secretion rate between early and late responses to GnRH. The present example of the attenuation by folliculo-stellate cells of pituitary hormone secretion responses demonstrates that the cells regulate the cellular processes leading to a priming of the LH response to GnRH, rather than interfering with the access of GnRH to its receptor in gonadotrophs. Finally, it was found that stimulation of the adenylate cyclase enzyme with maximal effective doses of forskolin counteracted the inhibitory effect of bovine follicle fluid on the initial LH response to GnRH, but did not completely abolish the biphasic pattern of LH release. It is concluded that coupling to the adenylate cyclase enzyme is presumably involved in the LH surge inhibiting feedback action on the pituitary cells, but also other messenger pathways and intercellular interactions between pituitary cells may play a role in establishing a biphasic LH release at the pituitary level following GnRH administration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call