Abstract
Conjugated polymers with fluorine substituents on their backbone have exhibited improved performance over their un-fluorinated analogues by lowering the polymer HOMO level, thereby increasing the open-circuit voltage (VOC). To further investigate how fluorine substituents improve device performance, three polymers with the same donor and acceptor co-monomers, but differing by the number of fluorine atoms on the acceptor unit, were synthesized. Although the HOMO levels of the mono-(P1F) and di-fluorinated (P2F) polymers are essentially the same, an increase in VOC was still observed in the OPV device incorporating P2F. This implies that correlating the VOC to the donor polymer HOMO level is inadequate to fully explain the improvement in VOC. By calculating the charge transfer exciton binding energy from the measured film dielectric constant, it was found that the increase in VOC in going from P1F to P2F matches the decrease in charge transfer exciton binding energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.