Abstract

AbstractQuantitatively assessing attenuation and dispersion of elastic‐wave velocities in partially saturated reservoir is difficult because of its sensitivity to fluid distribution. We conducted experiments on homogeneous Indiana limestone samples, partially saturated by two methods: drying and imbibition which lead to different fluid distribution for a given saturation. Forced oscillations (from 0.004 to 100 Hz) and ultrasonic (1 MHz) measurements were done under confining pressure to measure the change of elastic moduli with frequency and their attenuation. Our measurements show that compressional (P‐)velocities are strongly sensitive to the sample’s saturation method. For high saturations (above 80%), obtained by drainage, compressional velocities are frequency dependent, and clear peaks of attenuation can be observed. However, at the same saturations obtained by imbibition, no dispersion or attenuation is observed. In addition, shear velocities show little variation with frequency, saturations, and fluid distribution. The dispersion and attenuation of P‐velocities are shown to be influenced by the pore fluid distribution, which was investigated using micro‐computer‐assisted tomographic (CT) scans. Furthermore, a numerical model developed within the framework of poroelasticity’s theory predicts well the experimental results, using the fluid distribution obtained from CT as an input. Our results show that the velocity dispersion was related to wave‐induced fluid flow at mesoscopic scale controlled by the geometry and distribution of the gas patches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.