Abstract

We report that the intrinsic viscosity [η] of nanocellulose dispersions can be solely expressed as a function of the aspect ratio p of the nanocellulose. Both short rod-like nanocrystalline and long spaghetti-like nanofibrillated celluloses were prepared as dispersions in water. The influence of the flexibility and dimensions of the nanocelluloses on the flow properties of their dispersions was investigated by experimental and theoretical approaches using seven nanocellulose samples with different widths (2.6-14.4 nm) and aspect ratios (23-376). As the aspect ratio of a nanocellulose increases, it becomes more flexible, and its dispersion has higher viscosity. Irrespective of the flexibility and dimensions of these nanocelluloses, the relationship between [η] and p was ρ[η] = 0.15 × p(1.9), where ρ is the density of the nanocellulose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.