Abstract

AbstractAn infinitely extending homogeneous, self‐gravitating rotating magnetized plasma flowing through a porous medium has been considered under the influence of Finite Larmor Radius (FLR) and other transport phenomena. A general dispersion relation has been derived through the linearized perturbation equations. Longitudinal and transverse modes of propagation have been discussed for the rotation with axis parallel and perpendicular to the magnetic field. The joint influence, of the aforesaid parameters, does not essentially change the Jeans' criterion of instability but modifies the same. The adiabatic sonic speed has been replaced by the isothermal one due to the thermal conductivity. It is further observed that the FLR corrections have stabilizing effect for an inviscid, non‐rotating plasma, in case of transverse propagation. Rotation decreases the Larmor radius, whereas the porosity reduces the effects of rotation, FLR, and the magnetic field. Viscosity removes the effects of both, the roation, and the FLR corrections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call