Abstract

ABSTRACTThe crystal plastic theory was used to examine the effect of film-cooling hole arrangements on mechanical properties of cooled turbine blade. The finite element method was used to analyze the maximum von Mises stress and resolved shear stress of an octahedral slip system considering the number of rows, diameter, spacing, and tangential-to-longitudinal hole spacing (h/l) ratio. The different arrangements were found to have a significant influence on the maximum von Mises stress and resolved shear stress. For the triangular arrangement, the von Mises stress and resolved shear stress were highest with double rows, followed by a single row and then triple rows. For the quadrilateral arrangement, the stresses were highest with double rows, followed by triple rows and then a single row. Increasing the spacing or decreasing the diameter reduced the maximum von Mises stress and weakened the multi-hole interference effect. Both the maximum von Mises stress and resolved shear stress decreased with the h/l ratio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.