Abstract

The characteristics of the packing material under an alternating electric field are an important factor in the removal of FCCS particles. In this study, the electric field distribution of a separation unit consisting of packed spheres under an alternating electric field is simulated, and the movement mechanism of catalyst particles is analysed. An "effective contact point" model is derived to predict the adsorption of filler contact points on catalyst particles under the alternating electric field, and the model is validated by simulations and experiments. The numerical calculation and experimental results indicate that the electrical properties of the filler spheres, the filler angle θ, and the frequency f of the alternating electric field affect the adsorption of catalyst particles. As the frequency of the electric field increases, the particle removal efficiency of the high-conductivity filler (silicon carbide) increases and then settles, and the separation efficiency of the low-conductivity filler (glass, zirconia) is not sensitive to the change in electric field frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call