Abstract

The use of hemp fibres as reinforcements in polymer composites requires a thorough understanding of the hemp fibres transformation processes to obtain a constant quality. In this context, the upstream processing termed field retting is considered. Retting allows a subsequent fibre separation from the plant stems by degradation of cementing compounds by microorganisms. This operation depends on weather conditions and is currently empirically carried out in fields, so that a large variability in the hemp fibres quality (color, morphology, biochemical composition, thermal properties and mechanical properties) is resulting. Therefore, the present study aims to investigate the influence of different retting durations (up to 9 weeks) on hemp fibres properties when harvested at the beginning of flowering growth stage to survey their temporal dynamic. Various assessments were applied on fibres: color observations, morphological (optical microscope), surface (ESEM) and biochemical (gravimetry) analyses, spectrocolorimetric measurements (pectins content), thermogravimetric (TGA) analysis, and mechanical in tensile mode testings. The results reveal that increasing the field retting duration leads to a change of color characteristics from light green to grey due to the development of microbial communities (most probably fungal and bacteria) at the stem surface. A separation of the fibres bundle to elementary fibres occurs with the degradation of pectins during retting. An increase of thermal stability of the fibres is also observed. Both increase of cellulose fraction and crystallinity induce an enhancement in tensile properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.