Abstract
Electrospinning is a versatile technique to fabricate nanofiber filters with high PM2.5 removal efficiency and relatively low pressure drop. The eletrospun nanofiber filters may therefore be applied in buildings to reduce indoor exposure to PM2.5 and the associated adverse health effects. This study investigated the influence of various filter parameters, including fiber diameter, filter thickness, and packing density, on the PM2.5 removal efficiency. In this work, 25 nylon electrospun nanofiber filters with different filter parameters were prepared, and the PM2.5 removal efficiency of each sample was measured at five different face velocities. In total, 125 sets of measured data were obtained. The results show that the PM2.5 removal efficiency of nylon electrospun nanofiber filters was negatively associated with the fiber diameter, and positively associated with the thickness of the filter. However, there was no clear correlation between PM2.5 removal efficiency and packing density. This investigation further developed a semi-empirical model for predicting the PM2.5 removal efficiency of nylon nanofiber filters. The accuracy of the model was satisfactory with a median relative error of 7.9%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.