Abstract

Nicalon® plain-weave fiber fabric-reinforced silicon carbide (SiC) matrix composites with various pyrolytic carbon fiber/matrix interface coating thicknesses have been successfully fabricated by forced chemical vapor infiltration (FCVI) methods. The influence of the carbon interface coating thickness on the fracture behavior of these fiber fabric-reinforced SiC composites has been investigated. Experimental results indicate that fiber coating thickness significantly alters the fracture behavior of SiC composites. The fracture strength exhibits a maximum as the coating thickness increases. A theoretical model has been developed to simulate the fracture behavior in the SiC composites with varied carbon interface coatings. The model assumes that microcracking, which is due to low matrix toughness, initiates and arrests continuously. The model-predicted fracture behavior compares well with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.