Abstract

BackgroundThe surface properties of probiotic bacteria influence to a large extent their interactions within the gut ecosystem. There is limited amount of information on the effect of the production process on the surface properties of probiotic lactobacilli in relation to the mechanisms of their adhesion to the gastrointestinal mucosa. The aim of this work was to investigate the effect of the fermentation pH and temperature on the surface properties and adhesion ability to Caco-2 cells of the probiotic strain Lactobacillus rhamnosus GG.ResultsThe cells were grown at pH 5, 5.5, 6 (temperature 37°C) and at pH 6.5 (temperature 25°C, 30°C and 37°C), and their surfaces analysed by X-ray photoelectron spectrometry (XPS), Fourier transform infrared spectroscopy (FT-IR) and gel-based proteomics. The results indicated that for all the fermentation conditions, with the exception of pH 5, a higher nitrogen to carbon ratio and a lower phosphate content was observed at the surface of the bacteria, which resulted in a lower surface hydrophobicity and reduced adhesion levels to Caco-2 cells as compared to the control fermentation (pH 6.5, 37°C). A number of adhesive proteins, which have been suggested in previous published works to take part in the adhesion of bacteria to the human gastrointestinal tract, were identified by proteomic analysis, with no significant differences between samples however.ConclusionsThe temperature and the pH of the fermentation influenced the surface composition, hydrophobicity and the levels of adhesion of L. rhamnosus GG to Caco-2 cells. It was deduced from the data that a protein rich surface reduced the adhesion ability of the cells.

Highlights

  • Lactic acid bacteria and in particular lactobacilli have been extensively used in the food and pharmaceutical industries and play an important role in the control of undesirable microorganisms in the intestinal and urogenital tract

  • There is a good indication of the link that exists between the production process and the physiological characteristics of the cells, there is a limited knowledge on the effect of the production process on the surface properties of probiotic lactobacilli, and on how these relate to the adhesion of the probiotic cells to the gastrointestinal mucosa

  • This is the first study of its kind that looks at the fermentation and processing part and tries to relate the physical and biochemical properties of the bacterial cells to find answers related to the functional aspects of the probiotics, such as adhesion to the human GI tract

Read more

Summary

Introduction

Lactic acid bacteria and in particular lactobacilli have been extensively used in the food and pharmaceutical industries and play an important role in the control of undesirable microorganisms in the intestinal and urogenital tract For this reason, their use as probiotics has been extensively studied, aiming to elucidate the mechanisms of actions and produce strains with enhanced activities. The aim of this work was to investigate the effect of the fermentation pH (pH 5, 6, 6.5 and uncontrolled pH) and temperature (25, 30 and 37°C, all at pH 6.5) on the surface properties of L. rhamnosus GG and on its ability to adhere to Caco-2 cells The rationale behind this is that sub-optimal process conditions have been shown to affect the technological properties of the cells and are likely that they can affect the surface properties of the cells, and their adhesion abilities. The aim of this work was to investigate the effect of the fermentation pH and temperature on the surface properties and adhesion ability to Caco-2 cells of the probiotic strain Lactobacillus rhamnosus GG

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call