Abstract

We investigate the linear and nonlinear optical properties of Basic Fuchsin influenced by femtosecond laser ablated silver nanoparticles in deionised water. Single beam z-scan technique using a Q-switched Nd:YAG laser (Spectra PhysicsLAB-1760, 532 nm, 7 ns, 10 Hz) is used for the present study. Quenching of fluorescence is observed in the presence of silver nanoparticles. Transmission electron microscopic observation reveals that the nanoparticles are spherical in shape, with an average size of 7 nm. The samples show self-defocusing nonlinearity and better nonlinear absorption behavior in the presence of silver sol. The nonlinear absorption varies with varying input fluence and concentration. The results show that the variations in the nonlinear parameters are also due to the surface plasmon resonance of silver nanoparticles. The nonlinearity of the dye is increased in the presence of silver nanoparticles, which makes the material suitable for various photonic and optoelectronic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.