Abstract

We consider the dynamical evolution of a simple climate system that describes the average temperature of the Earth’s atmosphere owing to radiative forcing and coupling to a positive feedback variable such as the concentration of greenhouse gases in the presence of fluctuations. Analysing the resulting stochastic dynamical system shows that, if the temperature relaxes rapidly relative to the concentration, the time-dependent and stationary probability density functions (pdfs) for the temperature rise possess a fat tail. In contrast, if the feedback variable relaxes rapidly relative to the temperature, the pdf has no fat tail, and, instead, the system shows critical slowing down as the singular limit of positive feedback is approached. However, if there is uncertainty in the feedback variable itself, a fat tail can reappear. Our analysis may be generalized to more complex models with similar qualitative results. Our results have policy implications: although fat tails imply that the expectation of plausible damage functions is infinite, the pdfs permit an examination of the trade-off between reducing emissions and reducing the positive feedback gain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.