Abstract

In this work, we report for the first time the improvement of the photovoltaic characteristics of dye-sensitized solar cells (DSSCs) by doping TiO2 with Fe2O3. DSSCs were fabricated using various percentages of Fe2O3-doped TiO2 composite nanoparticles. The Fe2O3-doped DSSCs exhibited a maximum conversion efficiency of 5.76% because of the effective electron transport. DSSCs based on Fe2O3-doped TiO2 films showed better photovoltaic performance than cells fabricated with only TiO2 nanoparticles. This result was attributed to the prevention of recombination between electrons in the TiO2 conduction band with the dye or electrolytes. A mechanism was suggested based on impedance results, which indicated improved electron transport at the interface of the TiO2/dye/electrolyte.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.