Abstract

The increasing demands for Al sheets with superior mechanical properties and excellent formability require a profound knowledge of the microstructure and texture evolution in the course of their production. The present study gives a comprehensive overview on the primary- and secondary phase formation in AlMg(Mn) alloys with varying Fe and Mn additions, including variations in processing parameters such as solidification conditions, homogenization temperature, and degree of cold rolling. Higher Fe alloying levels increase the primary phase fraction and favor the needle-shaped morphology of the constituent phases. Increasing Mn additions alter both the shape and composition of the primary phase particles, but also promote the formation of dispersoids as secondary phases. The size, morphology, and composition of primary and secondary phases is further affected by the processing parameters. The average dispersoid size increases significantly with higher homogenization temperature and large primary particles tend to fragment during cold rolling. The microstructures of the final soft annealed states reflect the important effects of the primary and secondary phase particles on their evolution. The results presented in this paper regarding the relevant secondary phases provide the basis for an in-depth discussion of the mechanisms underlying the microstructure formation, such as Zener pinning, particle stimulated nucleation, and texture evolution, which is presented in Part II of this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.