Abstract

We describe the structure, microstructure, and petrophysical properties of fault rocks from two normal fault zones formed in low-porosity turbiditic arkosic sandstones, in deep diagenesis conditions similar to those of deeply buried reservoirs. These fault rocks are characterized by a foliated fabric and quartz-calcite sealed veins, which formation resulted from the combination of the (1) pressure solution of quartz, (2) intense fracturing sealed by quartz and calcite cements, and (3) neoformation of synkinematic white micas derived from the alteration of feldspars and chlorite. Fluid inclusion microthermometry in quartz and calcite cements demonstrates fault activity at temperatures of 195C to 268C. Permeability measurements on plugs oriented parallel with the principal axes of the finite strain ellipsoid show that the Y axis (parallel with the foliation and veins) is the direction of highest permeability in the foliated sandstone (10–2 md for Y against 10–3 md for X, Z, and the protolith, measured at a confining pressure of 20 bars). Microstructural observations document the localization of the preferential fluid path between the phyllosilicate particles forming the foliation. Hence, the direction of highest permeability in these fault rocks would be parallel with the fault and subhorizontal, that is, perpendicular to the slickenlines representing the local slip direction on the fault surface. We suggest that a similar relationship between kinematic markers and fault rock permeability anisotropy may be found in other fault zone types (reverse or strike-slip) affecting feldspar-rich lithologies in deep diagenesis conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.