Abstract

The recent FDA affirmation of nisin, an antimicrobial peptide, as a GRAS (generally recognized as safe) additive in pasteurized cheese spreads has renewed interest in its potential application in US dairy products. Fluid milks were prepared with varying concentrations of milk fat (0 to 12.9%) and of nisin (0 to 50 U/ml). Biological activity assays using a sensitive indicator microorganism in a well diffusion system indicated that initial nisin activity (50 U/ml) decreased by about 33% when it was added to skim milk and by more than 88% when added to milk containing 12.9% fat. Nisin activity decreased by ca. 50% in milk containing 1.29% fat. Milks containing 0, 10, or 50 U/ml of nisin and varying fat percentages were challenged with approximately log10 7 to 7.5 cfu/ml of log phase Listeria monocytogenes Scott A or Jalisco. At 2h after inoculation, the viable count of L. monocytogenes Scott A decreased to log10 .30 cfu/ml in skim milk with 50 U/ml of nisin, decreased to log10 2.90 cfu/ml in skim milk with 10 U/ml of nisin, and increased slightly (log10 7.8 cfu/ml) in skim milk without nisin. In half-and-half (12.9% milk fat), nisin was far less effective in inhibiting Listeria with populations decreasing to log10 6.57 cfu/ml for 10 U/ml of nisin and log10 5.87 cfu/ml for 50 U/ml. Similar results were obtained with L. monocytogenes Jalisco. The nonionic emulsifier, Tween 80, partially counteracted decreases of nisin activity in milks, whereas the anionic emulsifier, lecithin, had no effect. Addition of Tween 80 significantly increased the activity of nisin against L. monocytogenes in milk regardless of fat content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call