Abstract

Many seabirds including penguins are adapted to long periods of fasting, particularly during parts of the reproductive cycle and during moult. However, the influence of fasting on the gastrointestinal (GI) microbiota has not been investigated in seabirds. Therefore, the present study aimed to examine the microbial composition and diversity of the GI microbiota of fasting little (Eudyptula minor) and king penguins (Aptenodytes patagonicus) penguins during early and late moult. The results from this study indicated that there was little change in the abundance of the major phyla during moult, except for a significant increase in the level of Proteobacteria in king penguins. In king penguins the abundance of Fusobacteria increases from 1.73% during early moult to 33.6% by late moult, whilst the abundance of Proteobacteria (35.7% to 17.2%) and Bacteroidetes (19.5% to 11%) decrease from early to late moult. In little penguins, a decrease in the abundances of Firmicutes (44% to 29%) and an increase in the abundance of Bacteroidetes (11% to 20%) were observed from early to late moult respectively. The results from this study indicate that the microbial composition of both king and little penguins alters during fasting. However, it appears that the microbial composition of king penguins is more affected by fasting than little penguins with the length of fast the most probable cause for this difference.

Highlights

  • An intricate and complex relationship exists between a host and its microbiota

  • (qPCR) of the bacterial populations of four major phyla (Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria) from DNA obtained from faecal samples collected from king (n = 12) and little penguins (n = 9) during early and late moult showed contrasting results

  • Bacteroidetes was the most abundant phyla followed by Firmicutes, Proteobacteria and Actinobacteria, whilst Bacteroidetes and Proteobacteria, were the most abundant phyla in king penguins

Read more

Summary

Introduction

The gastrointestinal (GI) microbiota plays a significant role in energy extraction, fat metabolism and storage, production of short chain fatty acids and host adiposity [1,2,3,4] and has a profound influence on the modulation of host metabolism [5]. The use of germ free animals has highlighted the importance of GI microbiota on vertebrate hosts. Germ-free animals are more susceptible to disease, and require a greater caloric intake to achieve and maintain a normal body weight [1]. When germ free animals are inoculated with the microbiota of conventionally raised hosts, the body fat level of the germ-free host rapidly increases, despite decreased food intake [1], indicating that members of the GI microbiota may modulate fat deposition [7]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call