Abstract

The objective of this study was to investigate if a variation in extracellular-K+ concentrations alters the effects of global pre-conditioning on ischemia-induced arrhythmias. Rat hearts were Langendorff-perfused with Krebs-Henseleit solution and randomised in 8 groups (n = 12/group): four control groups (K+: 2, 4, 6, or 8 mmol/L) which underwent 30-min coronary artery occlusion and four preconditioned groups (K+: 2, 4, 6, or 8 mmol/L) in which the 30-min regional ischemia was preceded by 2 cycles of 3 min global ischemia. In the presence of low K+ (2 mmol/L), there were no differences between control and preconditioning groups in the number of ventricular premature beats (VPBs): 194 +/- 64 vs. 217 +/- 81, the incidence of ventricular tachycardia (VT): 100% vs. 100% and of ventricular fibrillation (VF): 100% vs. 100%. In the presence of normal K+ concentration (4 mmol/L), ischemic preconditioning reduced the number of VPBs from 88 +/- 26 to 25 +/- 10, (p < 0.05), the incidence of VT from 100 to 50% (p < 0.05), and of VF from 67 to 16% (p < 0.05). In the condition of higher K+ concentration (6 mmol/ L), VPBs (34 +/- 8 vs. 11 +/- 4), the incidence of VT (100% vs. 25%; p < 0.05 ) and VF (25% vs. 8%) were further reduced in preconditioned hearts. In the condition of K+ concentration (8 mmol/L), there were no differences in VPBs (11 +/- 3 vs. 7 +/- 2), the incidence of VT (8% vs. 0%) and VF (8% vs. 0%) between control and preconditioned hearts. Our data show that ischemic preconditioning affords protection against arrhythmias during coronary artery occlusion in the isolated rat heart and that hypokalemia abolishes the antiarrhythmic effects of global preconditioning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call