Abstract

The influence of phytoplankton-derived soluble extracellular polymeric substances (EPS), pH, and ionic strength (IS) on the dissolution, speciation, and stability of nano-CuO, nano-Cu, and Kocide (a micron sized Cu(OH)2-based fungicide) was investigated over 90 days. EPS improved the stability of commercial copper-based nanoparticles (CBNPs) in most conditions, in addition to influencing their dissolution. The dissolution rate was pH 4≫pH 7>pH 11. The presence of EPS correlated with higher dissolved Cu at pH 7 and 11, and lower dissolved Cu at pH 4. More dissolution was observed at higher IS (NaCl) due to complexation with Cl-. Dissolution of nano-CuO at pH 7 increased from 0.93% after 90 days (without EPS) to 2.01% (with 5 mg-C EPS/L) at 10 mM IS. Nano-CuO dissolved even more (2.42%) when IS was increased to 100 mM NaCl (with EPS). The ratio of free-Cu2+/total dissolved Cu decreased in the presence of EPS, or as pH and/or IS increased. On a Cu mass basis, Kocide had the highest dissolved and suspended Cu at pH 7. However, dissolution of nano-Cu resulted in a higher fraction of free Cu2+, which may make nano-Cu more toxic to pelagic organisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call