Abstract

Studies were undertaken in cultured opossum kidney (OK) cells to determine whether the rate of H+ secretion by apical membrane Na+/H+ exchange is modulated by changes in extracellular pH or perfusion rate. H+ secretion was assessed in single cells by measuring the rate of Na(+)-dependent intracellular pH recovery after NH4Cl loading, using the pH-sensitive fluorescent dye, 2'7'-bis(carboxyethyl)-5,6-carboxyfluorescein, in monolayers mounted to allow independent perfusion of the apical and basolateral surfaces. At constant intracellular pH, Na(+)-dependent H+ secretion was found to be inversely related to extracellular H+ activity, and directly related to the perfusate flow rate. Inhibition of H+ secretion by perfusate acidity occurred immediately and was greater when perfusate Na+ was reduced, consistent with H+ competition with Na+ for binding to the transporter. By contrast, the effect of the perfusion rate was a delayed response, requiring 20 min of exposure, and was independent of perfusate Na+ concentration. The results indicate that both extracellular pH and the perfusion rate modulate H+ secretion by OK cells, and that the two effects are independent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.