Abstract

Volumetric accuracy is susceptible to thermal gradient caused by internal heat source (IHS) and external heat source (EHS). A temperature-structure multi-step calculation method is presented to investigate the influences of EHSs on volumetric thermal errors of precision machine tools. The temperature and structure of the machine tool are simulated first, and then, the volumetric thermal errors are calculated using multi-body theory method. Simulations are completed to study the effects of different EHSs on a machine tool, and series of validating experiments are carried out to verify the modeling method. The test results in specific position and working condition revealed that EHSs contribute 53, 21, and 68% of thermal deviations in X, Y, and Z directions individually. It is illustrated that the EHS is an important factor affecting the volumetric accuracy of precision machine tools. The methods provided in this paper are valuable for machine tool designers to evaluate the EHS effects on volumetric thermal errors during designing process; furthermore, some insulating measures are suggested to improve the accuracy and accuracy stability of precision machine tools by reducing the EHS influences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call