Abstract

The LCAO MO self-consistent field method in combination with the 6-31** basis set is used to calculate sections of the potential energy surface for a proton in the NH3…HCl system in the presence of an external electrostatic field. The field strength is varied in the range of 0.000 to 0.017 a. u. In the absence of the field, the potential of the proton in the isolated complex has one well, the N–Cl distance is equal to 2.92 A, and the NH3…H–Cl bond is a hydrogen bond. With increasing distance between the N and Cl atoms, a second well appears in the potential, with the well near the Cl atom remaining deeper. In the presence of an external electric field, with increasing its strength, the depth of the well near the N atom increases, while the height of the barrier for proton transfer from the chlorine to the nitrogen atom decreases. At a certain field strength, the well near the nitrogen atom becomes deeper than that near the chlorine atom, so the proton moves to the nitrogen, making the complex ionic. Thus, the external electric field can influence the type of chemical bond in NH3…HCl system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.