Abstract

To evaluate the effects of exposure protocol, voxel sizes, and artifact removal algorithms on the trueness of segmentation in various mandible regions using an artificial intelligence (AI)-based system. Eleven dry human mandibles were scanned using a cone beam computed tomography (CBCT) scanner under differing exposure protocols (standard and ultra-low), voxel sizes (0.15mm, 0.3mm, and 0.45mm), and with or without artifact removal algorithm. The resulting datasets were segmented using an AI-based system, exported as 3D models, and compared to reference files derived from a white-light laboratory scanner. Deviation measurement was performed using a computer-aided design (CAD) program and recorded as root mean square (RMS). The RMS values were used as a representation of the trueness of the AI-segmented 3D models. A 4-way ANOVA was used to assess the impact of voxel size, exposure protocol, artifact removal algorithm, and location on RMS values (α = 0.05). Significant effects were found with voxel size (p < 0.001) and location (p < 0.001), but not with exposure protocol (p = 0.259) or artifact removal algorithm (p = 0.752). Standard exposure groups had significantly lower RMS values than the ultra-low exposure groups in the mandible body with 0.3mm (p = 0.014) or 0.45mm (p < 0.001) voxel sizes, the symphysis with a 0.45mm voxel size (p = 0.011), and the whole mandible with a 0.45mm voxel size (p = 0.001). Exposure protocol did not affect RMS values at teeth and alveolar bone (p = 0.544), mandible angles (p = 0.380), condyles (p = 0.114), and coronoids (p = 0.806) locations. This study informs optimal exposure protocol and voxel size choices in CBCT imaging for true AI-based automatic segmentation with minimal radiation. The artifact removal algorithm did not influence the trueness of AI segmentation. When using an ultra-low exposure protocol to minimize patient radiation exposure in AI segmentations, a voxel size of 0.15mm is recommended, while a voxel size of 0.45mm should be avoided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.