Abstract

Water repellent treatment is one of the effective means to improve the durability of concrete. This paper aims to investigate the water repellency of cement-based materials treated with silane-based water repellent agent under different exposure environments. Five different exposure conditions were applied in this experiment, namely, standard moist curing room, in-door laboratory atmosphere, pre-oven-dried condition, and out-door natural environment with or without shelter. Three different types of mortars with water-to-cement ratios of 0.4, 0.5 and 0.6 were prepared. And three different dosages (200, 400, 600 g/m2) of silane gel were utilized on the surface of specimens. The impregnation depth and water absorption after hydrophobic treatment have been measured. Results indicate that the initial moisture condition of mortar has a significant influence on the efficiency of surface silane impregnation. The depth of silane impregnation gradually decreases with the increase of initial moisture condition. The water repellency of surface impregnation of cement-based materials was well exhibited under the condition of about 50% relative humidity. It illustrated that the moisture within the cement-based materials affects the hydrolysis reaction process and the formation of hydrophobic membrane. Thus, the water repellency of cement-based materials greatly depends on the initial moisture content and the thickness of hydrophobic layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call