Abstract

BackgroundMulti-city population-based epidemiological studies have observed heterogeneity between city-specific fine particulate matter (PM2.5)-mortality effect estimates. These studies typically use ambient monitoring data as a surrogate for exposure leading to potential exposure misclassification. The level of exposure misclassification can differ by city affecting the observed health effect estimate.MethodsThe objective of this analysis is to evaluate whether previously developed residential infiltration-based city clusters can explain city-to-city heterogeneity in PM2.5 mortality risk estimates. In a prior paper 94 cities were clustered based on residential infiltration factors (e.g. home age/size, prevalence of air conditioning (AC)), resulting in 5 clusters. For this analysis, the association between PM2.5 and all-cause mortality was first determined in 77 cities across the United States for 2001–2005. Next, a second stage analysis was conducted evaluating the influence of cluster assignment on heterogeneity in the risk estimates.ResultsAssociations between a 2-day (lag 0–1 days) moving average of PM2.5 concentrations and non-accidental mortality were determined for each city. Estimated effects ranged from −3.2 to 5.1% with a pooled estimate of 0.33% (95% CI: 0.13, 0.53) increase in mortality per 10 μg/m3 increase in PM2.5. The second stage analysis determined that cluster assignment was marginally significant in explaining the city-to-city heterogeneity. The health effects estimates in cities with older, smaller homes with less AC (Cluster 1) and cities with newer, smaller homes with a large prevalence of AC (Cluster 3) were significantly lower than the cluster consisting of cities with older, larger homes with a small percentage of AC.ConclusionsThis is the first study that attempted to examine whether multiple exposure factors could explain the heterogeneity in PM2.5-mortality associations. The results of this study were found to explain a small portion (6%) of this heterogeneity.

Highlights

  • Multi-city population-based epidemiological studies have observed heterogeneity between city-specific fine particulate matter (PM2.5)-mortality effect estimates

  • This is the first study that attempted to examine whether multiple exposure factors could explain the heterogeneity in PM2.5-mortality associations

  • A more thorough evaluation of potential differences between the five clusters examined in this study was limited by the small number of cities that comprised Clusters 2 and 5. Overall, this is the first study that attempted to examine whether multiple exposure factors could explain the heterogeneity in PM2.5-mortality associations

Read more

Summary

Introduction

Multi-city population-based epidemiological studies have observed heterogeneity between city-specific fine particulate matter (PM2.5)-mortality effect estimates. These studies typically use ambient monitoring data as a surrogate for exposure leading to potential exposure misclassification. The observed city-to-city heterogeneity has not been clearly linked to any one PM2.5 component or source [8], nor has there been evidence that the city specific relationship between ambient concentrations of PM2.5 components and gaseous pollutants with PM2.5 mass explains any city-to-city heterogeneity [9] This has led to the hypothesis that exposure patterns (i.e., indoor and outdoor) may explain some of the heterogeneity in risk estimates observed in PM2.5-mortality studies

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.