Abstract

The electrochemical oxidation of distillery effluent was studied in a batch reactor in the presence of supporting electrolyte NaCl using Mixed Metal Oxide (MMO) electrode. The effect of operating parameters such as current density, initial pH, and initial electrolyte concentration on the percentage of Chemical Oxygen Demand (COD) removal, power consumption, and current efficiency were studied. The maximum percentage removal of COD was observed to be 84% at a current density of 3 A/dm2at an electrolyte concentration of 10 g/l with an effluent COD concentration of 1000 ppm and at an initial pH of 6. The operating parameters for the treatment of distillery effluent by electrochemical process were optimized using response surface methodology by CCD. The quadratic regression models with estimated coefficients were developed for the percentage removal of COD and power consumption. It was observed that the model predictions matched with experimental values with an R2 value of 0.9504 and 0.9083 for COD removal and power consumption respectively. The extent of color removal and oxidation of organic compounds were analyzed using UV spectrophotometer and HPLC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.