Abstract

Tea plant (Camellia sinensis) may hyperaccumulate fluorine (F) in its leaves, which may cause fluorosis in tea consumers. Recent studies have implied that exogenous calcium (Ca) may reduce F in tea leaves, although our mechanistic understanding of this phenomenon remains limited. Here, the effects of exogenous Ca on the physiological, biochemical and ionic homeostasis of tea leaves were investigated in the presence and absence of F. Elevated levels of malondialdehyde (MDA) and impaired cellular ultrastructure indicated that exogenous F induced stress in tea plants subjected to deficient Ca (0.01, 0.05 mM) and extremely excessive Ca (10 mM) treatments. Additionally, more F were accumulated in leaves compared to the control when tea plants were treated with 0.5 mM Ca. The lowest levels of MDA and F were observed at an optimal level of 5 mM Ca. F increased the levels of caffeine, polyphenols, and catechins, but decreased the content of soluble sugars and gallic acid when the level of Ca was within 5 mM. Moreover, based on a multivariate analysis on ionic composition, the Ca-regulated disorder in the homeostasis of B, Al, Cu, and Zn was strongly correlated with the accumulation of F. Our results demonstrate that within a range of concentrations, exogenous Ca was able to reduce F content and enhance F tolerance in tea leaves. These effects of exogenous Ca on F tolerance may be related to ionic homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.