Abstract

Abstract Emission and combustion parameters of common rail direct injection combustion engine with different proportions of exhaust gas recirculation (EGR) rate and long-carbon-chain alcohol blends on performance are the main motive of this research. To lessen the dependency on diesel fuel and reduce harmful emissions, 1-hexanol is used, as it has better fuel properties than small-carbon-chain alcohol, and it can be blended with diesel. In common rail direct injection combustion engine, research was conducted, in which fuel blends (1-hexanol-diesel) were variant, i.e., (10%, 20%, 30%) by volume whereas engine speed was fixed at 1500 rpm by varying the load at 25% step from 25 to 100%. Blends were examined with various exhaust gas recirculation rates (10 and 20%) to see what impact they have on engine properties. It was observed that the higher the proportion of 1-Hexanol, the lower the engine performance. The research revealed that for the blend D70H30, around 8.24% rise in brake specific fuel consumption, slight rise in hydrocarbon, 2.80% reduction in brake thermal efficiency (BTE), and 16.70% reduction in nitrogen oxides (NOx) emission. With 1-hexanol-diesel blends, the engine is noted to function effortlessly, so as a substitute to the diesel upto 30% of the 1-hexanol can be used while increasing the total cost of implementation. Increase in hexanol and EGR percentage shown negative impact on the brake thermal efficiency, HC and CO emission however, NOx and CO2 emissions were found to be decreased.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.