Abstract
Generally, the effects of excitation power and dopant concentration on the optical temperature sensing behaviors of rare earth (RE) doped materials based on the fluorescence intensity ratio (FIR) technique are disregarded. In this paper, Er3+: BaGd2(MoO4)4 phosphors with different concentrations were fabricated by the high temperature solid-state reaction method. The results show that the variation of FIR (2H11/2/4S3/2) with excitation power is not only related to the laser-induced heating effect, but also the diverse power-dependences of 2H11/2 and 4S3/2 levels. Consequently, the temperature calibration curves change at different excitation power densities. When the calibration curve obtained at a low power density is applied to estimate the temperature of the object excited at a high power density, a large overestimate of the temperature rise induced by the optical heating effect can be caused. Besides, the temperature sensing sensitivity depends on the Er3+ doping concentration, which increases first with concentration to a maximum and then reduces. The maximal absolute sensitivity is ~110.5 × 10−4 K−1 in 5mol% Er3+: BaGd2(MoO4)4 phosphor, which is among the highest values of RE ions doped phosphors based on thermally coupled levels recorded before.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.