Abstract

The kinetic model of processes occurring in the plasma of an electric-discharge 193-nm excimer ArF laser operating on mixtures of He and Ne buffer gases is developed. The influence of excitation and active medium parameters on the lasing energy and total efficiency of the electric-discharge excimer ArF laser is studied theoretically and experimentally. It is shown that a specific pump power of ∼4.5–5.0 MW cm-3 is required for attaining the maximum lasing energy for the highest efficiency of an ArF laser operating on a He—Ar—F2 mixture. For the first time, the pulse energy of 1.3 J at an efficiency of 2.0% is attained for an ArF laser with a specific pump power of 5.0 MW cm-3 using mixtures with helium as a buffer gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call