Abstract
In this work, the solubility of oxcarbazepine in polymers (PEG 6000, PEG 20,000, PVP K25, and PVP K30) and their aqueous solutions was investigated by experimental measurement and thermodynamic modeling. Firstly, the solubility of oxcarbazepine in water and polymers was modeled and the corresponding binary interaction parameters (oxcarbazepine + water and oxcarbazepine + polymer) were determined based on the experimental phase equilibrium data. Furthermore, the solubility of oxcarbazepine in the polymer aqueous solution (the mass ratios of polymers in water were 2 %, 4 %, and 6 %) was predicted by the solid-liquid equilibrium (SLE) coupled with the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT). It was observed that the predicted results agreed well with the experimental data, and the average relative deviation (ARD) was <7 %. In this study, the solubility of oxcarbazepine in polymer aqueous solution was successfully predicted through the SLE coupled with the PC-SAFT, which was expected to provide theoretical guidance for the selection of pharmaceutical excipients and the rational design of preparations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.